Reinhard Genzel awarded Nobel Prize in Physics

Reinhard Genzel, a professor emeritus of physics and of astronomy at Berkeley and director of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, will share half the 2020 Nobel Prize in Physics with UCLA professor Andrea Ghez “for the discovery of a supermassive compact object at the center of our galaxy.”

The other half of the prize goes to United Kingdom theoretical physicist Roger Penrose “for the discovery that black hole formation is a robust prediction of the general theory of relativity.”

“We are all very excited about the Nobel Prize to Genzel. It is a privilege to belong to a faculty of such distinction,” said physics chair James Analytis. “This honor shows how Berkeley physics leads the way in many of the most important discoveries in physics, and that is as much a reflection of the caliber our students as it is because of our faculty. This a clear statement that Berkeley is the home of science at the frontier of the physics world.”

The announcement in Stockholm, Sweden, is for work concerning one of the most bizarre predictions of the general theory of relativity espoused by Albert Einstein more than 100 years ago — that if an object were massive enough, its gravity would be so strong that nothing, not even light, could escape. In 1965, Penrose proved that black holes really can form and described them in detail, showing that, at their heart, they hide a singularity in which all the known laws of nature cease.

In 1969, Donald Lynden-Bell and Martin Rees suggested that the Milky Way galaxy might contain a supermassive black hole at its center, but evidence was lacking because the galactic core is obscured by interstellar dust and could only be detected as a relatively faint radio source, called Sagittarius A*.

At the time, Genzel was a postdoctoral fellow at UC Berkeley working with the late Nobel laureate Charles Townes. The two presented the first observations hinting that the center of our galaxy harbored a massive black hole, though the evidence was weak. Genzel worked steadfastly over the ensuing decades to prove his case.

Related stories